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- Big picture, few details (so please let me know if you'd like
elaboration)
- Outline of the talk

1. Introducing the logics
2. Stating the problems
3. Outlining the strategy
4. Solving the problems using the strategy

- Overarching theme: a study of modal information logics
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Definition (language and semantics) Example
The is given by w IF (sup)pg

pu=L|p|-@|eVy| (sup)py,
and the of ‘(sup)’ is:

w Ik (supypyp  iff  Fu,v(ulk @; vlE
w = sup{u,v})
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Definition (frames and logics)
Three classes of (W, <), namely those where
(Pre) (W, <) is a preorder (refl, tr);
(Pos) (W, <) is a poset (anti-sym. preorder); and
(Sem) (W, <) is a join-semilattice (poset w. all bin. joins)
Resulting in the MILpre, MILpos, MILsem, respectively.

Appetizer: Let's show that MiLere € MiLpos C MiLsem. *see blackboard* 3
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From relations to algebras

Given a preorder (W, <), we can form its complex algebra w.rt. the
induced supremum relation:

(P(W)7Q7U7C7®7VV7')7
where
Y- Z:={zeW|z=suply,z},yc€Y,z€ Z}.

Let Pre™, Pos™ and Sem™ denote the classes of complex algebras of
preorders, posets and (join-)semilattices w.rt. the supremum relation.
Then,

— MILpr corresponds to the variety V(Pre™);
— MILpys to the variety V(Pos™); and
— MILsem to the variety V(Sem™).
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Why MILs?

- Connect with other logics (e.g, truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
~ Modestly extend S4 [MiLpre, MiLpos]. *see blackboard*

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MiLpre and MILpos; and
(D) proving (un)decidability.
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Initial study (MILp and MILp,s)

Proposition
MILs lack the finite model property (FMP) w.rt. their classes of
definition. *see blackboard*

How we solve (A), and then (D) using (A):

(1) We MILpr (and deduce MiLpe = MILpys).

(2) Use the axiomatization to find of structures C for
which Log(C) = MiLpe.
(3) Prove that on C we do have the FMP and deduce decidability.
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MILpr is (sound and complete w.rt.) the least normal modal logic with axioms:
pAgq— (Sup)pg
PPp — Pp
(sup)pg — (sup)gp
(p A (sup)gr) — (sup)pg

Proof idea

Soundness *see blackboard* v
For completeness, let T D I'y be an MCS extending some consistent T'g. We
construct a satisfying model using the method (but first, why
step-by-step? *see blackboard*).

(Base) Singleton frame Fo := ({0}, {(w0,0)}) and ‘labeling’ lp(zo) = T.
(Ind) Suppose (F, 1,) has been constructed.
- Ifz € Fr and —(sup)y)’ € Iy (x) but = sup,, {y, z} st.
P € ln(y), Y’ € ln(z), coherently extend to (Fp+1,ln+1) 2 (Fn,ln) SO

that z # sup,, 1 {y, 2}.
- Similarly, for (sup)xx’ € In ().



Completeness of MILp, (cont.)

Example

x x

{(sup)x0x0, (sup)x1xi} C () @ o
(sup)-repair Y (sup)-repair
2 Y 28
oy .z oy J = 2 e s
x0 € U(y) x4 € U(z) X0 € L(¥) x§ € U(2) X1 € Uz"xa € Wy)
a» d

~(sup)ey’ € I(z) 8

— (sup)-repair
~5
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MILpre is (sound and complete w.rt.) the least normal modal logic with axioms:
PAgq— (sup)pg
PPp — Pp
(sup)pg — (sup)gp
(p A (sup)qr) — (sup)pq

About the proof

Soundness: routine.
Completeness: step-by-step method.

As a corollary we get that MILpre = MILpos.
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(2) and (3): ‘decidability via completeness’

(2) Find another class C for which Log(C) = MiLpy:
(i) Nothing in the ax. of MILpe necessitating ‘(sup)’ to be interpreted

using a supremum relation.
(i) Canon. re-interpretation:

C:={(W,C) | (W,C) Ik (Re.) A (Co.) A (4) A (Dk.)},
where C C W3 is an arbitrary relation.
(iii) Then Log(C) = MILpr. *see blackboard*

(3) Decidability through FMP on C:
(i) On ¢, we get the FMP through filtration.
(i) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not
having the FMP (w.rt. the class of definition) might not be very telling.

1



Can we generalize these techniques?



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\".



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\"

Definition
The is given by adding ‘\" with

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )

We denote the resulting as MIL | pre, MIL\pys, respectively.



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\"

Definition
The is given by adding ‘\" with

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )
We denote the resulting as MIL | pre, MIL\pys, respectively.

Note that ‘(sup)’ and *\" are “inverses”; and ‘F" is expressible: we extend
temporal S4. *see blackboard*



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\"

Definition
The is given by adding ‘\" with

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )
We denote the resulting as MIL | pre, MIL\pys, respectively.

Note that ‘(sup)’ and *\" are “inverses”; and ‘F" is expressible: we extend
temporal S4. *see blackboard*

The problems now become

(A\) axiomatizing MIL,_pe and MIL\_p,s; and
(D\) proving (un)decidability.



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\".

Definition
The language is given by adding ‘\" with semantics:

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )

We denote the resulting logics as MIL e, MIL|_p,s, respectively.

Note that ‘(sup)’ and *\" are “inverses”; and ‘F" is expressible: we extend
temporal S4. *see blackboard*

The problems now become

(A\) axiomatizing MIL,_pe and MIL\_p,s; and
(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1) axiomatize the logic Log, (C);



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\".

Definition
The language is given by adding ‘\" with semantics:

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )

We denote the resulting logics as MIL e, MIL|_p,s, respectively.

Note that ‘(sup)’ and *\" are “inverses”; and ‘F" is expressible: we extend
temporal S4. *see blackboard*

The problems now become

(A\) axiomatizing MIL,_pe and MIL\_p,s; and
(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1) axiomatize the logic Log, (C);
(2') through representation show that Log, (C) = MIL| pe = MIL| pos; and



MILs with informational implication *\’

(Natural) extensions of MlLp,, and MILpos [and S4] are obtained by
adding an informational implication ‘\".

Definition
The language is given by adding ‘\" with semantics:

v - o\¢ iff Vu, w([u Ik ¢, w = sup{u,v}] = w - )

We denote the resulting logics as MIL e, MIL|_p,s, respectively.

Note that ‘(sup)’ and *\" are “inverses”; and ‘F" is expressible: we extend
temporal S4. *see blackboard*

The problems now become

(A\) axiomatizing MIL, p, and MIL\ p,s; and
(D\) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1) axiomatize the logic Log, (C);
(2') through representation show that Log, (C) = MIL| pe = MIL| pos; and
(3) get decidability through FMP on C.
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Selected points from proof of (A\), (D\) throu

Log, (C) is (sound and complete w.rt.) the least set of £\.5,-formulas that (i) is
closed under the axioms and rules for MiLp; (ii) contains the K-axioms for \;
(iii) contains the axioms

(sup)p(p\q) — g, and
p = q\((sup)pq);

and (iv) is closed under the rule
if F\-pre o, then =\ pre Y\ .

About the proof

Soundness: routine; completeness: standard.

Lambek Calculus of suprema on preorders/posets |

This logic (which = MIL| p, = MIL| pys) = NL-CL + {(Re.), (4), (Co.), (Dk.)},
where NL-CL is the Lambek Calculus extended with CL from, e.g., Buszkowski

(2021).
14
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MILs of minimal upper bounds

Question: What happens if we extend S4 with vocabulary for
minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:
MiLpre = MiLpos = MILKIT = ML

and even
MIL pre = MIL\_pos = MILY"F, = MILY"S

This concludes and summarizes our study of MILs on preorders and
posets.
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Axiomatizing MlLse,

Three ways to completeness (some intuitions for our proof):
el (e, ) Standard step-by-step (e.g., MiLpy) |
M Mo M; Moy M.,

° *—>ro—>0—> - °

‘Indeterministic step-by-step’ (MiLsem)

Model constr.:

Axioms: o ™ T
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What (might) come next while in Chapman:

- Proving (un)decidability of MiLsern and solving the ancillary
problem of fin. axiomatizability

- Proving (un)decidability of Urquhart’s relevance logic S
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Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets.”

- Made crossings with the Lambek Calculus and truthmaker
semantics.?

- Axiomatized MlLsem.

What (might) come next while in Chapman:

- Proving (un)decidability of MiLsern and solving the ancillary
problem of fin. axiomatizability

- Proving (un)decidability of Urquhart’s relevance logic S

- Working on representability problems for Boolean semilattices

- And, who knows, perhaps also working on some ideas of yours :-)

See SBK (Forthcoming[b])
2See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and

compactness) of a family of truthmaker logics.



Thank you!
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