Modal Information Logics: Axiomatizations and Decidability

Søren Brinck Knudstorp
Based on MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili
October 18, 2023
ILLC, University of Amsterdam

Plan for the talk

- Big picture, few details (so please let me know if you'd like elaboration)
- Outline of the talk

1. Introducing the logics
2. Stating the problems
3. Outlining the strategy
4. Solving the problems using the strategy

- Overarching theme. a study of modal information Logics

Plan for the talk

- Big picture, few details (so please let me know if you'd like elaboration)
- Outline of the talk

1. Introducing the logics
2. Stating the problems
3. Outlining the strategy
4. Solving the problems using the strategy

- Overarching theme: a study of modal information logics

Plan for the talk

- Big picture, few details (so please let me know if you'd like elaboration)
- Outline of the talk

1. Introducing the logics
2. Stating the problems
3. Outlining the strategy
4. Solving the problems using the strategy

- Overarching theme: a study of modal information logics

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v\left(u \Vdash \varphi ; v \Vdash \psi ; \quad \begin{array}{c}
w=\sup \{u, v\})
\end{array}\right.
$$

[^0]
Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

\qquad
(Pre) (W, \leq) is a preorder (refl., tr.);
(Pos) (W, \leq) is a poset (anti-sym. preorder); and
(Sem) (W, \leq) is a join-semilattice (poset w. all bin. joins)

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Three classes of frames (W, \leq), namely those where

$$
\begin{aligned}
& \text { (Pre) }(W, \leq) \text { is a preorder (refl., tr.); } \\
& \text { (Pos) }(W, \leq) \text { is a poset (anti-sym. preorder); and } \\
& \text { (Sem) }(W, \leq) \text { is a join-semilattice (poset w. all bin. joins) }
\end{aligned}
$$

Resulting in the logics $M I L_{\text {pre }}, M I L_{\text {pos }}, M I L_{\text {sem }}$, respectively.

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of ' $\langle\text { sup }\rangle^{\prime}$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Three classes of frames (W, \leq), namely those where

$$
\begin{aligned}
& \text { (Pre) }(W, \leq) \text { is a preorder (refl., tr.); } \\
& \text { (Pos) }(W, \leq) \text { is a poset (anti-sym. preorder); and } \\
& \text { (Sem) }(W, \leq) \text { is a join-semilattice (poset w. all bin. joins) }
\end{aligned}
$$

Resulting in the logics $M I L_{\text {pre }}, M I L_{\text {pos }}, M I L_{\text {sem }}$, respectively.

Appetizer: Let's show that $M I L_{\text {pre }} \subseteq M I L_{\text {pos }} \subsetneq M I L_{\text {sem }}$. *see blackboard*

How can we think of this algebraically?

From relations to algebras

Given a preorder (W, \leq), we can form its complex algebra w.r.t. the induced supremum relation:

$$
\left(\mathcal{P}(W), \cap, \cup,^{c}, \varnothing, W, \cdot\right),
$$

where

$$
Y \cdot Z:=\{x \in W \mid x=\sup \{y, z\}, y \in Y, z \in Z\} .
$$

Let Pre ${ }^{+}, \mathrm{Pos}^{+}$and Sem^{+}denote the classes of complex algebras of preorders, posets and (join-)semilattices w.r.t. the supremum relation. Then,

$$
\begin{aligned}
& \text { - MILpre corresponds to the variety } \mathbf{V}\left(\text { Pre }^{+}\right) \text {; } \\
& \text { - MIL pos to the variety } \mathbf{V}\left(\text { Pos }^{+}\right) \text {; and } \\
& \text { - MIL } \text { sem } \text { to the variety } \mathbf{V}\left(\text { Sem }^{+}\right) \text {. }
\end{aligned}
$$

From relations to algebras

Given a preorder (W, \leq), we can form its complex algebra w.r.t. the induced supremum relation:

$$
\left(\mathcal{P}(W), \cap, \cup,^{c}, \varnothing, W, \cdot\right),
$$

where

$$
Y \cdot Z:=\{x \in W \mid x=\sup \{y, z\}, y \in Y, z \in Z\} .
$$

Let Pre ${ }^{+}, \mathrm{Pos}^{+}$and Sem^{+}denote the classes of complex algebras of preorders, posets and (join-)semilattices w.r.t. the supremum relation.
> - MIL ${ }_{\text {pre }}$ corresponds to the variety $\mathbf{V}\left(\right.$ Pre $\left.^{+}\right)$;
> - MIL ${ }_{\text {Pos }}$ to the variety $\mathbf{V}\left(\right.$ Pos $\left.^{+}\right)$; and
> - MIL ${ }_{\text {sem }}$ to the variety $\mathbf{V}\left(\mathrm{Sem}^{+}\right)$

From relations to algebras

Given a preorder (W, \leq), we can form its complex algebra w.r.t. the induced supremum relation:

$$
\left(\mathcal{P}(W), \cap, \cup,{ }^{c}, \varnothing, W, \cdot\right)
$$

where

$$
Y \cdot Z:=\{x \in W \mid x=\sup \{y, z\}, y \in Y, z \in Z\}
$$

Let $\mathrm{Pr}^{+}, \mathrm{Pos}^{+}$and Sem^{+}denote the classes of complex algebras of preorders, posets and (join-)semilattices w.r.t. the supremum relation. Then,

- MIL $L_{\text {Pre }}$ corresponds to the variety $\mathbf{V}\left(\right.$ Pre $\left.^{+}\right)$;
- MIL ${ }_{\text {pos }}$ to the variety $\mathbf{V}\left(\right.$ Pos $\left.^{+}\right)$; and
- $M I L_{\text {sem }}$ to the variety $\mathbf{V}\left(\mathrm{Sem}^{+}\right)$.

Motivation

Why MILs?
with other logics (e.g., truthmaker semantics).

- Introduced to model a theory of information (by van Benthem (1996)) - Modestly extend S4 [MILpre, MIL pos]. *see blackboard*

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing MILpre and MILposi and
(D) proving (un)decidability

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MILpre, MILpos]. *see blackboard*

What in particutar?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing MII Pre and MAIL Posi and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MILpre, MILpos]. *see blackboard*

What in particular?

Guided hy timo central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MIL ${ }_{\text {Pre }}$, MIL $_{\text {pos }}$]. *see blackboard*

What in particular?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing M1L pre and M11 pos; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MIL ${ }_{\text {Pre }}$, MIL $_{\text {pos }}$]. *see blackboard*

What in particular?
Guided by two central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MILpre, MIL $L_{\text {pos }}$]. *see blackboard*

What in particular?
Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$; and
(D) proving (un)decidability.

Initial study (MIL Pre and MIL $_{\text {pos }}$)

Proposition

MII S lack the finite model property (FMP) w.r.t. their classes of definition. *see blackboard*

How we solve (A), and then (D) using (A):
(1) We axiomatize MIL $_{\text {pre }}$ (and deduce MIL $_{\text {pre }}=$ MIL $_{\text {pos }}$)
(2) Use the axiomatization to find another class of structures C for which $\log (\mathcal{C})=M I L_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and MIL $_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition. *see blackboard*

How we solve (A), and then (D) using (A):
(1) We axiomatize MIL pre $^{(\text {and deduce }}$ MIL pre $=$ MIL pos).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=$ MILpre.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition. *see blackboard*

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find
which $\log (\mathcal{C})=$ MIL $_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition. *see blackboard*

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=$ MIL Pre .
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition. *see blackboard*

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard* \checkmark
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$
(Ind) Suppose (\mathbb{F}_{n}, l_{n}) has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\mathrm{I}$
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

$$
\begin{aligned}
& - \text { If } x \in \mathbb{F}_{n} \text { and } \neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x) \text { but } x=\sup _{n}\{y, z\} \text { s.t. }
\end{aligned}
$$

that $x \neq \sup _{n+1}\{y, z\}$

- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in \ln (x)$

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$
(ind) Sunneon (TN 1) hacheon eonetructed
$-\operatorname{If} x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*)
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t. \quad ($\left.\operatorname{R}_{n}(y), l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$,

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t. $\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness *see blackboard*
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method (but first, why step-by-step? *see blackboard*).
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t. $\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

Completeness of MIL Pre (cont.)

Example

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
& \text { (Re.) } p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
& \text { (4) } P P p \rightarrow P p \\
& \text { (Co.) }\langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
& \text { (D.). }(p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
& \text { (Re.) } p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
& \text { (4) } P P p \rightarrow P p \\
& \text { (Co.) }\langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
& \text { (Dk.) }(p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

Corollary

As a corollary we get that MILpre $=$ MILpos.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced'logics, not having the FMP (w.r.t. the class of definition) miaht not be verv tellina.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {pre }}$:
(i) Nothing in the ax. of MIL pre $^{\text {necessitating ' }\langle\text { sup }\rangle \text { ' to be interpreted }}$ using a supremum relation.
(ii) Canon. re-interpretation
where $C \subseteq W^{3}$ is an
(iii) Then $\operatorname{Tog}(\mathcal{C})=$ MII Dro ' 'see blackboard
(3) Decidability through FMP on C:
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidabilitv.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILpre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(ii) And this implies decidability.

Thus, we have solved both (A) and (D)

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILpre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D)

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILpre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILpre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).
Gen. takeaway: When dealing with 'semantically introduced' logics,

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL ${ }_{\text {Pre }}$ necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILpre. *see blackboard*
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

Can we generalize these techniques?

MILs with informational implication ' \backslash '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

is given by adding ' V ' with

We denote the resulting logics as MILI-pre, MILI-pos, respectively.

Note that '(sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend

 temporal S4. *see blackboard*The probtems now become
(Al) axiomatizing $M I L_{1-p r e}$ and $M I L_{1-p o s}$; and
(DI) proving (un)decidability

The same (1)-(2)-(3) structure is used as before, but now we
(1') axiomatize the logic $\log _{\sqrt{ }(\mathcal{C}) \text {; }}$
$\left(\rho^{\prime}\right)$ through renresentation show that Logi $(C)=$ MILI-pe $=$ MILI-posi and

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{\text {l-Pre }}, M I L_{\text {l-Pos }}$, respectively.

Note that ' $\langle\sup)^{\prime}$ and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

The problems now become
(Al) axiomatizing $M I L_{1-p r e}$ and $M I L_{1-p o s}$; and
(DI) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we
(1') axiomatize the logic $\log _{(}(\mathcal{C})$;
(2') through representation show that Log $(C)=M / L_{1-p r e}=M I L_{1-p o s i}$ and

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-P r e}, M I L_{1-P o s}$, respectively.

Note that '(sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

```
The problems now become
(A\) axiomatizing MILI-pre and MILI-pos; and
(D\) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1') axiomatize the logic Log
(2') through representation show that Log (C)=MILIPre = MILI-posi and
```


MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S} 4$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
Note that ' \langle sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

The problems now become
(A
) axiomatizing $M I L_{1 \text {-pre }}$ and $M I L_{1-\text {-pos }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1') axiomatize the logic $\log _{\sqrt{ }(\mathcal{C}) \text {; }}$
(O^{\prime}) through renresentation show that Log $(C)=M / L_{1-p r e}=$ MIL L-posi and

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
Note that ' \langle sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

The problems now become
(A
) axiomatizing $M I L_{1 \text {-pre }}$ and $M I L_{1-\text {-pos }}$; and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
$\left(1^{\prime}\right)$ axiomatize the $\operatorname{logic} \log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log (\mathcal{C})=$ MILI-Pre $=$ MIL $_{\mid \text {-pos }}$ and

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
Note that ' \langle sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

The problems now become
(A
) axiomatizing $M I L_{1 \text {-pre }}$ and $M I L_{1-\text {-pos }}$; and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1^{\prime}) axiomatize the logic $\log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log _{\backslash}(\mathcal{C})=$ MIL $_{1 \text {-pre }}=M I L_{1 \text {-Pos }}$ and

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-re }}, M / L_{1-\text {-pos }}$, respectively.
Note that ' \langle sup)' and ' \backslash ' are "inverses"; and ' F ' is expressible: we extend temporal S4. *see blackboard*

The problems now become
(A
) axiomatizing $M I L_{1 \text {-pre }}$ and $M I L_{1-\text {-pos }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
$\left(1^{\prime}\right)$ axiomatize the logic $\log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log _{\backslash}(\mathcal{C})=M / L_{1 \text {-pre }}=M / L_{1 \text {-Pos }}$; and
(3) get decidability through FMP on \mathcal{C}.

Selected points from proof of (A
), (D
) through (1^{\prime}), (2^{\prime}), (3^{\prime})

($1{ }^{\prime}$) axiomatizing $\log _{\backslash}(\mathcal{C})$ (soundness and completeness)

$\log _{\backslash}(\mathcal{C})$ is (sound and complete w.r.t.) the least set of $\mathcal{L}_{\backslash-M}$-formulas that (i) is closed under the axioms and rules for MILpre; (ii) contains the K-axioms for \backslash; (iii) contains the axioms
(11) $\langle\sup \rangle p(p \backslash q) \rightarrow q$, and
(I2) $p \rightarrow q \backslash(\langle\sup \rangle p q)$;
and (iv) is closed under the rule $\left(N_{\backslash}\right)$ if $\vdash_{\backslash-\text { Pre }} \varphi$, then $\vdash_{\backslash \text {-Pre }} \psi \backslash \varphi$.

About the proof

Soundness: routine; completeness: standard.

Lambek Calculus of suprema on preorders/posets This logic $\left(\right.$ which $=$ MILI-Pre $\left.=M I L_{1-\text { Pos }}\right)=$ NL-CL $+\{($ Re. $),(4),(C o),.(D k)$.$\} ,$ where NL-CL is the Lambek Calculus extended with CL from, e.g., Buszkowski (2021).

Selected points from proof of (A
), (D
) through (1^{\prime}), (2^{\prime}), (3^{\prime})

($1{ }^{\prime}$) axiomatizing $\log _{\backslash}(\mathcal{C})$ (soundness and completeness)

$\log _{\backslash}(\mathcal{C})$ is (sound and complete w.r.t.) the least set of $\mathcal{L}_{\backslash-M}$-formulas that (i) is closed under the axioms and rules for MILPre; (ii) contains the K-axioms for \backslash; (iii) contains the axioms
(11) $\langle\sup \rangle p(p \backslash q) \rightarrow q$, and
(I2) $p \rightarrow q \backslash(\langle\sup \rangle p q)$;
and (iv) is closed under the rule
$\left(N_{\backslash}\right)$ if $\vdash_{\backslash-\text { Pre }} \varphi$, then $\vdash_{\backslash \text {-Pre }} \psi \backslash \varphi$.

About the proof

Soundness: routine; completeness: standard.

Lambek Calculus of suprema on preorders/posets

This logic $\left(\right.$ which $\left.=M I L_{1-P r e}=M I L_{\text {l-pos }}\right)=\mathrm{NL}-\mathrm{CL}+\{(R e),.(4),(C o),.(D k)$.$\} ,$ where NL-CL is the Lambek Calculus extended with CL from, e.g., Buszkowski (2021).

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing.

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\text {Min }}
$$

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\text {Min }}
$$

and even

$$
M I L_{\mid- \text {Pre }}=M I L_{\mid- \text {Pos }}=M I L_{\mid- \text {Pre }}^{\operatorname{Min}}=M I L_{l-\text { Pos }}^{\mathrm{Min}}
$$

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\text {Min }}
$$

and even

$$
M I L_{1-\text { Pre }}=M I L_{1-\text { Pos }}=M I L_{l-\text { Pre }}^{\operatorname{Min}}=M I L_{1-\text {-Pos }}^{\mathrm{Min}}
$$

This concludes and summarizes our study of MILs on preorders and posets.

How about join-semilattices (i.e., MIL sem)?

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

'Indeterministic step-by-step' (MILsem)

Model constr.

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
M
'Indeterministic step-by-step' $\left(M I L_{\text {sem }}\right)$

Model constr.

Standard step-by-step (e.g., MILpre)

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
\mathbb{M}
-

Standard step-by-step (e.g., MIL $_{\text {pre }}$)

'Indeterministic step-by-step' (MILsem)

Model constr.

Axioms:
π_{0}

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):
Henkin (e.g., K)

Standard step-by-step (e.g., MIL pre)

M

'Indeterministic step-by-step' (MIL $_{\text {sem }}$)

Conclusion and future work

What we have done:
Surveyed the landscape of MILs on preorders and posets. - Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$

- Axiomatized MILsem

What (might) come next while in Chapman:

Proving (un)'decida'...'ty of M .'. sem and sotving the ancillary problem of fin. axiomatizability
Proving (un)decidability of Urquhart's relevance logic S
Working on renresentability nroblems for Boolean semilat tices - And, who knows, perhaps also working on some ideas of yours :-)
compactness) of a family of truthmaker logics

Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$ Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$ Axiomatized M Lsem.

What (might) come next while in Chapman:

Proving (un)decidability of MIL $_{\text {sem }}$ and solving the ancillary problem of fin. axiomatizability
Proving (un)decidability of Urquhart's relevance logic S
Working on representability problems for Boolean semilattices

- And, who knows, perhaps also working on some ideas of yours :-)

[^1]compactness) of a family of truthmaker logics.

Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$

Axiomatized MILsem.

What (might) come next while in Chapman:
 problem of fin. axiomatizability
 Proving (un)decidability of Urquhart's relevance logic \mathbf{S}
 Working on representabilitv problems for Boolean semilattices
 And, who knows, perhaps also working on some ideas of yours :-)

[^2]
Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem $^{\text {s }}$

What (might) come next while in Chapman:
 - Proving (un)decidability of MIL sem and solving the ancillary problem of fin. axiomatizability
 Proving (un)decidability of Urquhart's relevance logic S
 Working on representability problems for Boolean semilattices
 And, who knows, perhaps also working on some ideas of yours :-)

[^3]
Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem.

What (might) come next while in Chapman:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problem of fin. axiomatizability
- Proving (un)decidability of Urquhart's relevance logic S
- Working on representability problems for Boolean semilattices
- And, who knows, perhaps also working on some ideas of yours :-)

[^4]
Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem.

What (might) come next while in Chapman:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problem of fin. axiomatizability
- Proving (un)decidability of Urquhart's relevance logic S
- Working on representability problems for Boolean semilattices
- And, who knows, perhaps also working on some ideas of yours :-)

[^5]
Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem.

What (might) come next while in Chapman:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problem of fin. axiomatizability
- Proving (un)decidability of Urquhart's relevance logic S
- Working on representability problems for Boolean semilattices
- And, who knows, perhaps also working on some ideas of yours :-)

[^6]
Conclusion and future work

What we have done:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem.

What (might) come next while in Chapman:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problem of fin. axiomatizability
- Proving (un)decidability of Urquhart's relevance logic \mathbf{S}
- Working on representability problems for Boolean semilattices
- And, who knows, perhaps also working on some ideas of yours :-)

[^7]Thank you!

References I

圊 Buszkowski，W．（03／2021）．＂Lambek Calculus with Classical Logic＂．
In：Natural Language Processing in Artificial Intelligence－NLPinAI 2020，pp．1－36．Dol：10．1007／978－3－030－63787－3＿1（cit．on pp． 53 sq．）．

Knudstorp，S．B．（Forthcoming［a］）．＂Logics of Truthmaker Semantics：Comparison，Compactness and Decidability＂．In： Synthese（cit．on pp．65－72）．

居－（Forthcoming［b］）．＂Modal Information Logics： Axiomatizations and Decidability＂．In：Journal of Philosophical Logic（cit．on pp．65－72）．

國 Van Benthem，J．（1996）．＂Modal Logic as a Theory of Information＂． In：Logic and Reality．Essays on the Legacy of Arthur Prior．Ed．by J．Copeland．Clarendon Press，Oxford，pp．135－168（cit．on pp．13－18）．

References II

國 Van Benthem, J. (10/2017). "Constructive agents". In: Indagationes Mathematicae 29. Dol: 10.1016/j.indag.2017.10.004 (cit. on pp. 13-18).

E- (2019). "Implicit and Explicit Stances in Logic". In: Journal of Philosophical Logic 48.3, pp. 571-601. DOI: 10.1007/s10992-018-9485-y (cit. on pp. 13-18).

[^0]: Definition (frames and logics) Three classes of frames (W, \leq), namely those where
 (Pre) (W, \leq) is a preorder (refl., tr.);
 (Pos) $(W, \leq$) is a poset (anti-sym. preorder); and
 (Sem) (W, \leq) is a join-semilattice (poset w. all bin. joins)

[^1]: ${ }^{1}$ See SBK (Forthcoming[b])

[^2]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^3]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^4]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^5]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^6]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^7]: ${ }^{1}$ See SBK (Forthcoming[b])
 ${ }^{2}$ See SBK (Forthcoming[a]) (or my thesis) for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

